HIGH-SENSITIVITY AND LONG-RANGE FMCW LIDAR WITH REAL-TIME POINTCLOUD GENERATION

AT A GLANCE

- Direct frequency modulation at 1550 nm and coherent detection enable longer range, intrinsic amplification and glare suppression
- High resolution (sub-cm) at long
 range
- High sensitivity (signal < 1nW detectable)
- Effective DSP and mirror control
- All fiber-based optics
- Reduced system complexity by monostatic design using 2D mirror scan

Features

- Scalability by using standard communication components
- Quasi-solid-state solutions for scanning
- Fiber-based optical frontend
- Real-time pointcloud by FPGA
- Effective DSP and mirror control for high resolution
- High sensitivity receiver for long range at low reflectance
- Eye-safe operation

Applications

- Advanced Driver Assistance Systems (ADAS)
- 3D Imaging
- Augmented Reality (AR)
- Smart Infrastructure & Logistics
- Robotics and Automation
- Industry 4.0

Technical Background

The Fraunhofer Institute HHI demonstrates a real-time LiDAR prototype for robotics and automation applications using a fiber-based design with FMCW detection and 2D mirror scanning. Its high resolution (sub-cm) and long range (>200m) show our latest advancements in high-sensitivity coherent detection and signal processing technology.

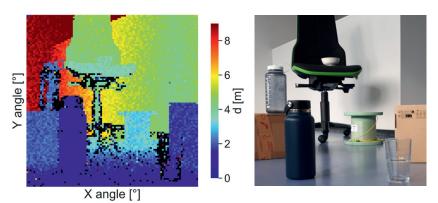


Figure 1: Raw pointcloud showing objects of different shape and reflectance.

Parameter	Version A	Version B	Version C
Scanning Mechanism	Galvo Mirror	Galvo Mirror	MEMS Mirror
Frequency Modulation	External Mod.	Direct Mod.	Direct Mod.
Resolution (°)	0.01	0.01	0.01
Range (10% target) (m)	> 200	~ 200	~ 20
Horizontal Field of View (°)	40	40	~ 8
Vertical Field of View (°)	40	40	~ 8
Distance Precision (1 σ spread)	0.0005%	0.1%	0.2%
Accuracy (cm)	< 0.5	1–3	5
Framerate (Hz)	0.1	0.1	> 0.1 - 1
Standoff (cm)	10	10	5
Application	ADAS Industry 4.0	Robotics Industry 4.0	ADAS Monitoring Robotics

Sarah Cwalina Photonic Networks and Systems

Phone +49 30 31002 - 753 | - 414 info-pn@hhi.fraunhofer.de

Fraunhofer Heinrich Hertz Institute Einsteinufer 37, 10587 Berlin Germany

www.hhi.fraunhofer.de/en/lidar